
f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning

Yongqin Xian1 Saurabh Sharma1 Bernt Schiele1 Zeynep Akata1,2

1Max Planck Institute for Informatics 2Amsterdam Machine Learning Lab

Saarland Informatics Campus University of Amsterdam

Abstract

When labeled training data is scarce, a promising data

augmentation approach is to generate visual features of un-

known classes using their attributes. To learn the class con-

ditional distribution of CNN features, these models rely on

pairs of image features and class attributes. Hence, they

can not make use of the abundance of unlabeled data sam-

ples. In this paper, we tackle any-shot learning problems

i.e. zero-shot and few-shot, in a unified feature generat-

ing framework that operates in both inductive and trans-

ductive learning settings. We develop a conditional gener-

ative model that combines the strength of VAE and GANs

and in addition, via an unconditional discriminator, learns

the marginal feature distribution of unlabeled images. We

empirically show that our model learns highly discrimina-

tive CNN features for CUB and FLO datasets, and establish

a new state-of-the-art in any-shot learning, i.e. inductive

and transductive generalized zero- and few-shot learning

settings.

1. Introduction

Learning with limited labels has been an important topic

of research as it is unrealistic to collect sufficient amounts

of labeled data for every object. Recently, generating vi-

sual features of previously unseen classes [14, 3, 6, 4] has

shown its potential to perform well on extremely imbal-

anced image collections. Our main focus in this work is

a new model that generates visual features of any class, uti-

lizing labeled samples when they are available and general-

izing to unknown concepts whose labeled samples are not

available. Prior work used GANs for this task [14, 4] as they

directly optimize the divergence between real and generated

data, but they suffer from mode collapse issues [2]. On the

other hand, feature generation with VAE [6] is more stable.

However, VAE optimizes the lower bound of log likelihood

rather than the likelihood itself [5]. Our model combines the

strengths of VAE and GANs by assembling them to a con-

ditional feature generating model, called f-VAEGAN-D2,

that synthesizes CNN image features from class embed-

dings, i.e. class-level attributes or word2vec [8]. Thanks to

its additional discriminator that distinguishes real and gen-

erated features, our f-VAEGAN-D2 is able to use unlabeled

data from previously unseen classes without any condition.

The features learned by our model are disciminative in that

they boost the performance of any-shot learning as well as

being visually and textually interpretable.

2. f-VAEGAN-D2 Model

As shown in Figure 1, we proposes to enhance the fea-

ture generator by combining VAE and GANs with shared

decoder and generator, and adding another discrimina-

tor (D2) to distinguish real or generated features without

applying any condition.

Setup. We are given a set of images X = {x1, . . . , xl} ∪
{xl+1, . . . , xt} encoded in the image feature space X , a

seen class label set Y s, a novel label set Y n, a.k.a unseen

class label set Y u in the zero-shot learning literature. The

set of class embeddings C = {c(y)|∀y ∈ Y s ∪ Y n} are

encoded in the semantic embedding space C that defines

high level semantic relationships between classes. The first

l points xs(s ≤ l) are labeled as one of the seen classes

ys ∈ Y s and the remaining points xn(l + 1 ≤ n ≤ t)
are unlabeled, i.e. may come from seen or novel classes.

In the inductive setting, the training set contains only la-

beled samples of seen class images, i.e. {x1, . . . , xl}.

On the other hand, in the transductive setting, the train-

ing set contains both labeled and unlabeled samples, i.e.

{x1, . . . , xl, xl+1, . . . , xt}. In the generalized zero-shot

learning, the goal is to classify those unlabeled points that

can be either from seen or novel classes. Generalized few-

shot learning is defined similarly when there are additional

samples from novel classes available.

Our framework can be thought of as a data augmenta-

tion scheme where arbitrarily many synthetic features of

sparsely populated classes aid in improving the discimina-

tive power of classifiers. In the following, we only detail

our feature generating network structure as the classifier is
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Figure 1: Our any-shot feature generating network (f-VAEGAN-D2) consist of a feature generating VAE (f-VAE), a fea-

ture generating WGAN (f-WGAN) with a conditional discriminator (D1) and a transductive feature generator with a non-

conditional discriminator (D2) that learns from both labeled data of seen classes and unlabeled data of novel classes.

unconstrained (we use linear softmax classifiers).

2.1. Baseline Feature Generating Models

In feature generating networks (f-WGAN) [14] the gener-

ator G(z, c) generates a CNN feature x̂ from random noise

zp and a condition c, and the discriminator D(x, c) takes as

input a pair of input features x and a condition c and outputs

a real value, optimizing:

Ls
WGAN =E[D(x, c)]− E[D(x̃, c)] (1)

− λE[(||∇x̂D(x̂, c)||2 − 1)
2
],

The feature generating VAE [5] (f-VAE) consists of an

encoder E(x, c), which encodes an input feature x and a

condition c to a latent variable z, and a decoder Dec(z, c),
which reconstructs the input x from the latent z and condi-

tion c optimizing:

Ls
V AE = KL(q(z|x, c)||p(z|c)) (2)

− Eq(z|x,c)[log p(x|z, c)],

2.2. Our f-VAEGAN-D2 Model

It has been shown that ensembling a VAE and a GAN

leads to better image generation results [7]. We hypothesize

that VAE and GAN learn complementary information for

feature generation as well. This is likely when the target

data follows a complicated multi-modal distribution where

two losses are able to capture different modes of the data.

To combine f-VAE and f-WGAN, we introduce an en-

coder E(x, c) : X × C → Z , which encodes a pair of fea-

ture and class embedding to a latent representation, and a

discriminator D1 : X × C → R maps this embedding pair

to a compatibility score, optimizing:

Ls
V AEGAN = Ls

V AE + γLs
WGAN (3)

where the generator G(z, c) of the GAN and decoder

Dec(z, c) of the VAE share the same parameters. The su-

perscript s indicates that the loss is applied to feature and

class embedding pair of seen classes. γ is a hyperparameter

to control the weighting of VAE and GAN losses.

Furthermore, when unlabeled data of novel classes be-

comes available, we propose to add a non-conditional dis-

criminator D2 (D2 in f-VAEGAN-D2) which distinguishes

between real and generated features of novel classes. This

way D2 learns the feature manifold of novel classes. For-

mally, our additional non-conditional discriminator D2 :
X → R distinguishes real and synthetic unlabeled samples

using a WGAN loss:

Ln
WGAN =E[D2(xn)]− E[D2(x̃n)]− (4)

λE[(||∇x̂n
D2(x̂n)||2 − 1)

2
],

where x̃n = G(z, yn) with yn ∈ Y n, x̂n = αxn+(1−αxn)
with α ∼ U(0, 1). Since Ls

WGAN is trained to learn CNN

features using labeled data conditioned on class embed-

dings of seen classes and class embeddings encode shared

properties across classes, we expect these CNN features to

be transferable across seen and novel classes. However, this

heavily relies on the quality of semantic embeddings and

suffers from domain shift problems. Intuitively, Ln
WGAN

captures the marginal distribution of CNN features and pro-

vides useful signals of novel classes to generate transferable

CNN features. Hence, our unified f-VAEGAN-D2 model

optimizes the following objective function:

min
G,E

max
D1,D2

Ls
V AEGAN + Ln

WGAN (5)
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CUB FLO

Method u s H u s H

IND

ALE [1] 23.7 62.8 34.4 13.3 61.6 21.9

CLSWGAN [14] 43.7 57.7 49.7 59.0 73.8 65.6

Cycle-CLSWGAN [4] 47.9 59.3 53.0 61.6 69.2 65.2

Ours 48.4 60.1 53.6 56.8 74.9 64.6

Ours-finetuned 63.2 75.6 68.9 63.3 92.4 75.1

TRAN

ALE-tran [13] 23.5 45.1 30.9 13.6 61.4 22.2

GFZSL [11] 24.9 45.8 32.2 21.8 75.0 33.8

DSRL [15] 17.3 39.0 24.0 26.9 64.3 37.9

UE-finetune [10] 74.9 71.5 73.2 - - -

Ours 61.4 65.1 63.2 78.7 87.2 82.7

Ours-finetuned 73.8 81.4 77.3 91.0 97.4 94.1

Table 1: Comparing with the-state-of-the-art. Top: in-

ductive methods (IND), Bottom: transductive methods

(TRAN). Fine tuning is performed only on seen class im-

ages as this does not violate the zero-shot condition. We

measure Top-1 accuracy on seen (s) and unseen (s) classes

as well as their harmonic mean (H) in GZSL setting.

3. Experiments

Generalized Zero-shot Learning We validate our model

on two widely-used datasets for zero-shot learning,

i.e. Caltech-UCSD-Birds (CUB) [12] and Oxford Flow-

ers (FLO) [9]. We follow the exact class splits as well as

the evaluation protocol of [13] and for fair comparison we

use the same image and class embeddings for all models.

In Table 1 we compare our model with the best perform-

ing recent methods on two zero-shot learning datasets in

GZSL setting. We observe that feature generating meth-

ods, i.e. our model, CLSWGAN [14], Cycle-CLSWGAN [4]

achieve better results than others. This is due to the fact

that data augmentation through feature generation leads to a

more balanced data distribution such that the learned classi-

fier is not biased to seen classes.Note that although UE [10]

is not a feature generating method, it leads to strong re-

sults as this model uses additional information, i.e. it as-

sumes that unlabeled test samples always come from un-

seen classes. Our model with fine-tuning leads to 77.3%
harmonic mean (H) on CUB, 94.1% H on FLO, achieving

significantly higher results than all the prior works.

3.1. Generalized Few­shot Learning

In few-shot or low-shot learning scenarios, classes are di-

vided into base classes that have a large number of labeled

training samples and novel classes that contain only few la-

beled samples per category. We use the class splits from the

standard ZSL setting, i.e. 150 base and 50 novel. For FLO

we also follow the same class splits as in ZSL.

As shown in Figure 3 for both datasets both our induc-

tive and transductive models have a significant edge over all
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Figure 2: Generalized Few-Shot Learning (GFSL)

Figure 3: GFSL results on CUB and FLO with increasing

number of training samples per novel class. Plots show the

top-1 accuracy on all classes.

the competing methods when the number of samples from

novel classes is small, e.g. 1,2 and 5. This shows that our

model generates highly discriminative features even with

only few real samples are present. In fact, only with one

real sample per class, our model achieves almost the full ac-

curacy obtained with 20 samples per class. Going towards

the full supervised learning, e.g. with 10 or 20 samples per

class, all methods perform similarly. This is expected since

in the setting where a large number of labeled samples per

class is available, then a simple softmax classifier that uses

real ResNet-101 features achieves the state-of-the-art.

In inductive GFSL setting, our model with two samples

per class achieves the same accuracy as softmax trained

with ten samples per class on CUB. In the transductive

GFSL setting, for FLO, for our model only one labeled sam-

ple is enough to reach the accuracy obtained with 20 labeled

samples with softmax.

4. Conclusion

In this work, we develop a transductive feature generat-

ing framework that synthesizes CNN image features from

a class embedding. Our generated features circumvent the

scarceness of the labeled training data issues and allow us to

effectively train softmax classifiers. Our framework com-

bines conditional VAE and GAN architectures to obtain a

more robust generative model. We further improve VAE-

GAN by adding a non-conditional discriminator that han-

dles unlabeled data from unseen classes. The second dis-

criminator learns the manifold of unseen classes and back-

propagates the WGAN loss to feature generator such that it

generalizes better to generate CNN image features for un-

seen classes. Our feature generating framework is effective

across generalized zero-shot (GZSL), and generalized few-

shot learning (GFSL) tasks on CUB and FLO datasets.
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